Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Genes Dev ; 35(15-16): 1093-1108, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34266887

RESUMEN

Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica , Animales , Transformación Celular Neoplásica/genética , Centrosoma , Inestabilidad Cromosómica/genética , Evolución Clonal , Inestabilidad Genómica/genética , Ratones
2.
EMBO Rep ; 21(6): e49234, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270908

RESUMEN

Centrosome amplification is a hallmark of cancer, and centrosome clustering is essential for cancer cell survival. The mitotic kinesin HSET is an essential contributor to this process. Recent studies have highlighted novel functions for intraflagellar transport (IFT) proteins in regulating motors and mitotic processes. Here, using siRNA knock-down of various IFT proteins or AID-inducible degradation of endogenous IFT88 in combination with small-molecule inhibition of HSET, we show that IFT proteins together with HSET are required for efficient centrosome clustering. We identify a direct interaction between the kinesin HSET and IFT proteins, and we define how IFT proteins contribute to clustering dynamics during mitosis using high-resolution live imaging of centrosomes. Finally, we demonstrate the requirement of IFT88 for efficient centrosome clustering in a variety of cancer cell lines naturally harboring supernumerary centrosomes and its importance for cancer cell proliferation. Overall, our data unravel a novel role for the IFT machinery in centrosome clustering during mitosis in cells harboring supernumerary centrosomes.


Asunto(s)
Proteínas Portadoras , Centrosoma , Proteínas Portadoras/genética , Centrosoma/metabolismo , Análisis por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Mitosis/genética
3.
Sci Rep ; 9(1): 10311, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31312011

RESUMEN

To build and maintain mitotic spindle architecture, molecular motors exert spatially regulated forces on microtubules (MT) minus-ends. This spatial regulation is required to allow proper chromosomes alignment through the organization of kinetochore fibers (k-fibers). NuMA was recently shown to target dynactin to MT minus-ends and thus to spatially regulate dynein activity. However, given that k-fibers are embedded in the spindle, our understanding of the machinery involved in the targeting of proteins to their minus-ends remains limited. Intraflagellar transport (IFT) proteins were primarily studied for their ciliary roles but they also emerged as key regulators of cell division. Taking advantage of MT laser ablation, we show here that IFT88 concentrates at k-fibers minus-ends and is required for their re-anchoring into spindles by controlling NuMA accumulation. Indeed, IFT88 interacts with NuMA and is required for its enrichment at newly generated k-fibers minus-ends. Combining nocodazole washout experiments and IFT88 depletion, we further show that IFT88 is required for the reorganization of k-fibers into spindles and thus for efficient chromosomes alignment in mitosis. Overall, we propose that IFT88 could serve as a mitotic MT minus-end adaptor to concentrate NuMA at minus-ends thus facilitating k-fibers incorporation into the main spindle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular , Células HCT116 , Humanos , Terapia por Láser , Nocodazol/farmacología , Huso Acromático/efectos de los fármacos , Sus scrofa
4.
Nat Commun ; 8(1): 1928, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203870

RESUMEN

Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning.


Asunto(s)
Aurora Quinasa B/metabolismo , Citocinesis/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Células Cultivadas , Células HCT116 , Células HeLa , Humanos , Riñón/citología , Túbulos Renales/citología , Enfermedades Renales Poliquísticas/genética , Sus scrofa , Proteínas Supresoras de Tumor/metabolismo
5.
Dev Cell ; 40(3): 313-322.e5, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28132847

RESUMEN

Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional genetic defects. We show that increasing centrosome number elevated tumor initiation in a mouse model of intestinal neoplasia. Most importantly, we demonstrate that supernumerary centrosomes are sufficient to drive aneuploidy and the development of spontaneous tumors in multiple tissues. Tumors arising from centrosome amplification exhibit frequent mitotic errors and possess complex karyotypes, recapitulating a common feature of human cancer. Together, our data support a direct causal relationship among centrosome amplification, genomic instability, and tumor development.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Centrosoma/metabolismo , Mamíferos/metabolismo , Aneuploidia , Animales , Epidermis/metabolismo , Neoplasias Intestinales/patología , Ratones Endogámicos C57BL , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(46): E6321-30, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578792

RESUMEN

Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase-mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation.


Asunto(s)
División Celular Asimétrica/fisiología , Centrosoma/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Regulación de la Expresión Génica , Linfoma/genética , Linfoma/metabolismo , Linfoma/patología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias del Timo/genética , Neoplasias del Timo/metabolismo , Neoplasias del Timo/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(46): E6311-20, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578791

RESUMEN

As nucleators of the mitotic spindle and primary cilium, centrosomes play crucial roles in equal segregation of DNA content to daughter cells, coordination of growth and differentiation, and transduction of homeostatic cues. Whereas the majority of mammalian cells carry no more than two centrosomes per cell, exceptions to this rule apply in certain specialized tissues and in select disease states, including cancer. Centrosome amplification, or the condition of having more than two centrosomes per cell, has been suggested to contribute to instability of chromosomes, imbalance in asymmetric divisions, and reorganization of tissue architecture; however, the degree to which these conditions are a direct cause of or simply a consequence of human disease is poorly understood. Here we addressed this issue by generating a mouse model inducing centrosome amplification in a naturally proliferative epithelial tissue by elevating Polo-like kinase 4 (Plk4) expression in the skin epidermis. By altering centrosome numbers, we observed multiciliated cells, spindle orientation errors, and chromosome segregation defects within developing epidermis. None of these defects was sufficient to impart a proliferative advantage within the tissue, however. Rather, impaired mitoses led to p53-mediated cell death and contributed to defective growth and stratification. Despite these abnormalities, mice remained viable and healthy, although epidermal cells with centrosome amplification were still appreciable. Moreover, these abnormalities were insufficient to disrupt homeostasis and initiate or enhance tumorigenesis, underscoring the powerful surveillance mechanisms in the skin.


Asunto(s)
División Celular Asimétrica/fisiología , Centrosoma/metabolismo , Epidermis/metabolismo , Homeostasis/fisiología , Animales , Muerte Celular/fisiología , Células Epidérmicas , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Noqueados , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(40): E4185-93, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246557

RESUMEN

The mitotic checkpoint (also known as the spindle assembly checkpoint) prevents premature anaphase onset through generation of an inhibitor of the E3 ubiquitin ligase APC/C, whose ubiquitination of cyclin B and securin targets them for degradation. Combining in vitro reconstitution and cell-based assays, we now identify dual mechanisms through which Bub3 promotes mitotic checkpoint signaling. Bub3 enhances signaling at unattached kinetochores not only by facilitating binding of BubR1 but also by enhancing Cdc20 recruitment to kinetochores mediated by BubR1's internal Cdc20 binding site. Downstream of kinetochore-produced complexes, Bub3 promotes binding of BubR1's conserved, amino terminal Cdc20 binding domain to a site in Cdc20 that becomes exposed by initial Mad2 binding. This latter Bub3-stimulated event generates the final mitotic checkpoint complex of Bub3-BubR1-Cdc20 that selectively inhibits ubiquitination of securin and cyclin B by APC/C(Cdc20). Thus, Bub3 promotes two distinct BubR1-Cdc20 interactions, involving each of the two Cdc20 binding sites of BubR1 and acting at unattached kinetochores or cytoplasmically, respectively, to facilitate production of the mitotic checkpoint inhibitor.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Sitios de Unión/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Ciclina B1/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Microscopía Fluorescente , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Transducción de Señal/genética , Imagen de Lapso de Tiempo , Ubiquitinación
9.
Hum Genet ; 133(8): 1023-39, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24748105

RESUMEN

Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans.


Asunto(s)
Centrómero/fisiología , Centrosoma/fisiología , Proteínas Cromosómicas no Histona/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , Cinetocoros/fisiología , Microcefalia/genética , Mutación/genética , Osteocondrodisplasias/genética , Adulto , Secuencia de Aminoácidos , Ciclo Celular , Células Cultivadas , Niño , Preescolar , Segregación Cromosómica , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Femenino , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Mitosis/fisiología , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Homología de Secuencia de Aminoácido
10.
Proc Natl Acad Sci U S A ; 110(44): E4134-41, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24133140

RESUMEN

Aneuploidy, a chromosome content other than a multiple of the haploid number, is a common feature of cancer cells. Whole chromosomal aneuploidy accompanying ongoing chromosomal instability in mice resulting from reduced levels of the centromere-linked motor protein CENP-E has been reported to increase the incidence of spleen and lung tumors, but to suppress tumors in three other contexts. Exacerbating chromosome missegregation in CENP-E(+/-) mice by reducing levels of another mitotic checkpoint component, Mad2, is now shown to result in elevated cell death and decreased tumor formation compared with reduction of either protein alone. Furthermore, we determine that the additional contexts in which increased whole-chromosome missegregation resulting from reduced CENP-E suppresses tumor formation have a preexisting, elevated basal level of chromosome missegregation that is exacerbated by reduction of CENP-E. Tumors arising from primary causes that do not generate chromosomal instability, including loss of the INK4a tumor suppressor and microsatellite instability from reduction of the DNA mismatch repair protein MLH1, are unaffected by CENP-E-dependent chromosome missegregation. These findings support a model in which low rates of chromosome missegregation can promote tumorigenesis, whereas missegregation of high numbers of chromosomes leads to cell death and tumor suppression.


Asunto(s)
Aneuploidia , Inestabilidad Cromosómica/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Proteínas Mad2/metabolismo , Neoplasias/genética , Animales , Muerte Celular/fisiología , Células Cultivadas , Segregación Cromosómica/genética , Técnica del Anticuerpo Fluorescente , Ratones , Modelos Biológicos , Imagen de Lapso de Tiempo
11.
Curr Opin Cell Biol ; 24(6): 809-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23127609

RESUMEN

Each time a cell divides its chromosome content must be equally segregated into the two daughter cells. This critical process is mediated by a complex microtubule based apparatus, the mitotic spindle. In most animal cells the centrosomes contribute to the formation and the proper function of the mitotic spindle by anchoring and nucleating microtubules and by establishing its functional bipolar organization. Aberrant expression of proteins involved in centrosome biogenesis can drive centrosome dysfunction or abnormal centrosome number, leading ultimately to improper mitotic spindle formation and chromosome missegregation. Here we review recent work focusing on the importance of the centrosome for mitotic spindle formation and the relation between the centrosome status and the mechanisms controlling faithful chromosome inheritance.


Asunto(s)
Aneuploidia , Centrosoma/metabolismo , Inestabilidad Cromosómica , Animales , Ciclo Celular , Proliferación Celular , Centrosoma/patología , Humanos , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA